Synemin acts as a regulator of signalling molecules during skeletal muscle hypertrophy.
نویسندگان
چکیده
Synemin, a type IV intermediate filament (IF) protein, forms a bridge between IFs and cellular membranes. As an A-kinase-anchoring protein, it also provides temporal and spatial targeting of protein kinase A (PKA). However, little is known about its functional roles in either process. To better understand its functions in muscle tissue, we generated synemin-deficient (Synm(-) (/-)) mice. Synm(-) (/-) mice displayed normal development and fertility but showed a mild degeneration and regeneration phenotype in myofibres and defects in sarcolemma membranes. Following mechanical overload, Synm(-) (/-) mice muscles showed a higher hypertrophic capacity with increased maximal force and fatigue resistance compared with control mice. At the molecular level, increased remodelling capacity was accompanied by decreased myostatin (also known as GDF8) and atrogin (also known as FBXO32) expression, and increased follistatin expression. Furthermore, the activity of muscle-mass control molecules (the PKA RIIα subunit, p70S6K and CREB1) was increased in mutant mice. Finally, analysis of muscle satellite cell behaviour suggested that the absence of synemin could affect the balance between self-renewal and differentiation of these cells. Taken together, our results show that synemin is necessary to maintain membrane integrity and regulates signalling molecules during muscle hypertrophy.
منابع مشابه
Ursolic Acid Improve Skeletal Muscle Hypertrophy by Increasing of PAX7, Myod and Myogenin Expression and Satellite Cells Proliferation in Native Broiler Chickens
Ursolic acid (UA) is known as a naturally occurring triterpene pentacyclic compound in some medicinal herbs including savory that affects the skeletal muscle. In the current study, the effect of UA was evaluated on C2C12 cells and satellite cells (SCs) isolated from native broiler chicks. First in the in vitro experiment, the C2C12 cell line obtained from the Stem Cell Technology Research Cente...
متن کاملPlectin 1 links intermediate filaments to costameric sarcolemma through beta-synemin, alpha-dystrobrevin and actin.
In skeletal muscles, the sarcolemma is possibly stabilized and protected against contraction-imposed stress by intermediate filaments (IFs) tethered to costameric sarcolemma. Although there is emerging evidence that plectin links IFs to costameres through dystrophin-glycoprotein complexes (DGC), the molecular organization from plectin to costameres still remains unclear. Here, we show that plec...
متن کاملMyopathic changes in murine skeletal muscle lacking synemin.
Diseases of striated muscle linked to intermediate filament (IF) proteins are associated with defects in the organization of the contractile apparatus and its links to costameres, which connect the sarcomeres to the cell membrane. Here we study the role in skeletal muscle of synemin, a type IV IF protein, by examining mice null for synemin (synm-null). Synm-null mice have a mild skeletal muscle...
متن کاملBeta-synemin expression in cardiotoxin-injected rat skeletal muscle
BACKGROUND Beta-synemin was originally identified in humans as an alpha-dystrobrevin-binding protein through a yeast two-hybrid screen using an amino acid sequence derived from exons 1 through 16 of alpha-dystrobrevin, a region common to both alpha-dystrobrevin-1 and -2. alpha-Dystrobrevin-1 and -2 are both expressed in muscle and co-localization experiments have determined which isoform prefer...
متن کاملExpression of intermediate filament-associated proteins paranemin and synemin in chicken development
The expression of two intermediate filament-associated proteins, paranemin (280,000 mol wt) and synemin (230,000 mol wt), was investigated with respect to the expression of two core intermediate filament proteins, desmin and vimentin, in various embryonic and adult chicken muscle and nonmuscle cells. All developing muscle cells, regardless of their type, simultaneously express desmin, vimentin,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 127 Pt 21 شماره
صفحات -
تاریخ انتشار 2014